A Note on Cochlear Implant

Limura Giordano
Department of Otolaryngology, Cairo University, Cairo, Egypt

About the Study

A Cochlear Implant (CI) is a surgically implanted neuroprosthesis that delivers a modified sense of sound to a person with sensorineural hearing loss. CI works by replacing the typical acoustic hearing process with electric signals that stimulate the auditory nerve directly. Intensive auditory training may help a person with a cochlear implant understand those signals as sound and speech. However, one-third of deaf youngsters who are just on a CI program and have no sign language input do not learn language. The implant is made up of two primary parts. The external component is usually worn behind the ear, but it can also be attached to clothing, as in the case of small children. The sound processor is made up of microphones, electronics, including Digital Signal Processor (DSP) chips, a battery, and a coil that sends a signal to the implant through the skin. The implant’s inner component includes a coil for receiving signals, circuitry, and an array of electrodes that are implanted in the cochlea and stimulate the cochlear nerve. Speech perception via an implant has continuously improved since the early days of implants in the 1970s and 1980s. Following installation, many users of contemporary implants improve their hearing and speech perception skills, especially when combined with lip-reading. However, even with an implant, the probability of not learning spoken language for pre-lingual deaf children is as high as 30%. One of the issues with these implants is that after implantation, hearing and speech understanding skills vary widely across implant users. The duration and source of hearing loss, the location of the implant in the cochlea, the overall health of the cochlear nerve, as well as individual re-learning capacities are all thought to play a role in this diversity, but no specific prognostic factors have been identified. The surgery is carried out under general anesthesia. Mastoidectomy with Facial Recess Approach (MFRA) is the most common surgical procedure for implanting the device. The surgery is normally performed under general anesthesia. Mastoiditis, otitis media (acute or with effusion), movement of the implanted device requiring a second treatment, damage to the facial nerve, damage to the chorda tympani, and wound infections are all risks associated with the procedures. Minor complications account for roughly 12% of all complications, whereas significant complications account for 3% of all difficulties; major complications include infections, facial paralysis, and device failure. The FDA recommends vaccination prior to CI procedures to reduce the risk of bacterial meningitis, which is around thirty times higher than in those who do not have CI procedures. The incidence of transitory facial nerve palsy is estimated to be around 1%. Device failure that necessitates reimplantation is predicted to happen 2.5–6% of the time. Disequilibrium, vertigo, or vestibular dysfunction can linger up to a week after the surgery in up to one third of persons.

Contact: Limura Giordano, E-mail: limg187@gmail.org; Department of Otolaryngology, Cairo University, Cairo, Egypt.

Copyright: © 2021 The Authors. This is an open access article under the terms of the Creative Commons Attribution NonCommercial ShareAlike 4.0 (https://creativecommons.org/licenses/by-nc-sa/4.0/).