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Introduction
Wound healing is a complex process 

involving inflammation, cell proliferation 
and tissue remodeling, and normally ends 
in a mature scar. Impairment of the early 
steps of wound healing can result in path-
ological responses, such as hypertrophic 
scarring [1]. Hypertrophic scars are char-
acterized by proliferation of dermal tissue 
with excessive deposition of fibroblast-
derived extracellular matrix protein, espe-
cially collagen, over long periods, and by 
persistent inflammation and fibrosis [2]. 

Excessive collagen deposition occurs rela-
tive to normal wounds. Type I collagen is 
the most abundant type of collagen in nor-
mal dermis (approximately 80% to 90%). 
Normal skin contains type I and type III 
collagen in a 4:1 ratio. In hypertrophic and 
immature scars, the percentage of type III 
collagen may be as high as 33% [3,4,5]. In 
other words, the scars remain immature 
with an abnormally high content of type 
III collagen [3,4]. Continuous deposition 
and/or abnormal turnover of collagen or 
the ratio of collagen type I/type III results 

1Bauru Dental School
University of São Paulo
Bauru–SP, Brazil

2Araraquara Dental School
São Paulo State University
Araraquara-SP, Brazil

Received: February 05, 2012 
Accepted: February 29, 2012 
Arch Clin Exp Surg 2012;X: X-X
DOI: 10.5455/aces.20120229052919

Corresponding author
Érica Dorigatti de Avila
Departamento de Estomatologia 
da Faculdade de Odontologia de 
Bauru
Universidade de São Paulo (USP)
Avenida Alameda Octávio 
Pinheiro Brizola, 9-75, 17012-901 
Bauru–SP, Brasil
erica.fobusp@yahoo.com.br

Original Article

Increased of Langerhans Cells in Smokeless 
Tobacco-Associated Oral Mucosal Lesions
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Abstract

Objective: To evaluate the changes in the number of Langerhans Cells (LC) observed in the epithelium of 
smokeless tobacco (SLT-induced) lesions. 
Methods: Microscopic sections from biopsies carried out in the buccal mucosa of twenty patients, who were 
chronic users of smokeless tobacco (SLT), were utilized. For the control group, twenty non-SLT users of SLT 
with normal mucosa were selected. The sections were studied with routine coloring and were immunostained 
for S-100, CD1a, Ki-67 and p63. These data were statistically analyzed by the Student’s t-test to investigate the 
differences in the expression of immune markers in normal mucosa and in SLT-induced leukoplakia lesions. 
Results: There was a significant difference in the immunolabeling of all markers between normal mucosa 
and SLT-induced lesions (p<0.001). The leukoplakia lesions in chronic SLT users demonstrated a significant 
increase in the number of Langerhans cells and in the absence of epithelial dysplasia. 
Conclusion: The increase in the number of these cells represents the initial stage of leukoplakia. 
Key words: Smokeless tobacco, leukoplakic lesions, cancer, langerhans cells, chewing tobacco.

Introduction

Among tobacco users, there is a false be-
lief that SLT is safe because it is not burned, 
which leads many people to quit cigarettes 
and start using SLT [1]. However, SLT con-
tains higher concentrations of nicotine than 
cigarettes and, in addition, nearly 30 carci-
nogenic substances, such as tobacco-specific 
N-nitrosamines (TSNA), which is formed 
during the aging process of the tobacco, [2-4] 
and which presents high carcinogenic poten-
tial. Moreover, because the tobacco has direct 

contact with the oral mucosa and creates a 
more alkaline environment, its products may 
even be more aggressive to tissue [5]. The 
percentage of SLT users is lower compared 
to cigarette users; however, usage is increasing 
among young individuals and it is therefore a 
significant and disturbing danger [6,7]. 

Initial studies on the effects of SLT on the 
oral mucosa demonstrated the formation of 
white lesions induced by chronic exposure to 
tobacco, characterized by epithelial thicken-
ing, increased vascularization, collagen altera-
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The understanding of the pathophysiological events of wound healing is very important to carry out 
the prevention or treatment of hypertrophic scars. Wound healing is a complex process consisting of 
the overlapping events, and the researchers have focused on the pathophysiology of the scar forma-
tion. The purpose of this article is to review the recent experimental studies about hypertrophic scars, 
and to analyze the substances focused on by recent experimental studies.
We analyzed the researches for new hopeful treatment modalities as well as the substances that are 
important to wound healing in the second part of this extensive review. The researchers have tried to 
find a way to scarless wound healing, and it seems likely that new therapies will be available within 
the next few years.
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in hypertrophic scar formation [6].
Growth factors and cytokines have also been in-

volved in scar formation, and these factors are targeted 
for potential therapeutic use in scar management [2]. 
Transforming growth factor-beta (TGF-β) has been 
linked clinically and experimentally to dermal prolif-
erative disorders. Polo and colleagues found an abnor-
mal dose response by fibroblasts of proliferative scars 
to TGF-β2 stimulation. Anti-transforming growth 
factor-beta (anti-TGF- β) was used to decrease scarring 
in experimental animals. Tregret describes antagoniz-
ing the proliferative effects of TGF-β2 and histamine 
with interferon-α2b [4]. Neutralization of TGF-β1 and 
β2 reduced scarring from experimental wounds in a rat 
model and the aim of many experimental anti-fibrotic 
therapies was to reduce TGF-β1 production  [1, 7].

The pathophysiology of wound healing is strictly 
related to the regulation of inflammation that relies on a 
number of cell types secreting growth factors, cytokines 
and chemokines [1]. Recent experimental studies have 
focused on the pathophysiology of the scar formation, 
and researchers are trying to modify collagen deposi-
tion. The surgical and non-surgical therapeutic mo-
dalities were discussed in the first part of this extensive 
review [8], and the purpose of this current article is 
to review the recent experimental studies about hyper-
trophic scarring, and to analyze the substances focused 
on by these studies.

Activin A and Follistatin: Activin A is a member 
of the TGF- β family. It is strongly induced after tissue 
and organ injuries, probably by serum growth factors 
released upon hemorrhage and by macrophage-derived 
cytokines, and it plays a role on growth and differen-
tiation of various cell types during organogenesis as 
well as on the repair process [1,9-13]. It has also been 
implicated in the pathogenesis of liver, pancreas, lung, 
cornea and kidney fibrosis, in Crohn’s disease and in 
rheumatoid arthritis [1,14-20]. It shares the same intra-
cellular Smad signaling pathway with TGF-β, but binds 
to its own specific transmembrane serine/threonine ki-
nase receptors and to follistatin, a secreted protein that 
inhibits activin by sequestration [1,21-23]. Transgenic 
mice overexpressing activin A show strongly hyper-
thickened epidermis, accelerated wound healing and 
enhanced scarring [1,24]. Conversely, in follistatin-

transgenic mice, wound closure is delayed and scar 
formation is reduced [1,25]. These findings suggest 
that activin A and follistatin influence scar formation 
and wound healing quality. Recently, a role of activin 
A in keloid pathogenesis has been reported [1,26]. In 
their more recent study, Fumagalli et al. investigated 
the role of activin/follistatin balance in HS genesis 
[1]. Multiple findings obtained in their study provided 
evidence for a role of activin A in pathologic scar for-
mation and evolution. Numerous activin+ cells were 
consistently observed in dermis from AHS. These data 
were substantiated by the constitutive release by AHS 
fibroblasts of higher levels of activin A and lower levels 
of follistatin, compared to RHS and NS fibroblasts [1]. 
TGF- β1 is considered the most important regulator of 
myofibroblast differentiation in the context of dermal 
wound healing and is the most abundant isoform in 
keloids and HS [1,27]. They presented evidence that 
activin has TGF-β1-like functions on AHS fibroblast 
activation [1,28]. Furthermore, their study revealed 
that TGF-β3 inhibits the scarring response [1,7].

Follistatin, by inhibiting activin-induced fibroblast 
proliferation and type I collagen expression, could act 
as a ‘brake’ on AHS formation, but it is underexpressed 
in AHS. This view is strengthened by the finding that 
transgenic mice overexpressing activin A showed der-
mal fibrosis, whereas scar formation was decreased in 
transgenic mice overexpressing follistatin [1,24,25]. 
On this basis, it can be assumed that activin antago-
nists should be effective in the treatment of AHS. Re-
cent findings support follistatin potential as an activin-
inhibiting therapeutic tool for diseases characterized 
by an interconnection of immunologic and fibrotic 
disorders [1,29]. Follistatin has been found effective 
in treating acute lung injury and bleomycin-induced 
fibrosis, as well as attenuated experimental colitis in 
mice [1,30,31]. Moreover, exogenous follistatin ad-
ministration significantly improved liver fibrosis. Based 
on these reports and on the recent study of Fumagalli 
et al., activin A could be considered a promising new 
target for AHS treatment strategies [1]. 

As mentioned before, transgenic mice overexpress-
ing activin in the skin were characterized by strongly 
enhanced wound healing, but also by excessive scar-
ring. These negative consequences of activin overex-
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pression were not observed in the follistatin (Fst) mu-
tant mice [32]. In their most recent study, Antsiferova 
et al. explored the consequences of targeted activation 
of activin in the epidermis and hair follicles by genera-
tion of mice lacking the activin antagonist follistatin 
in keratinocytes. They observed enhanced enlarged 
hyperproliferative epithelium in the tail epidermis of 
these animals. However, granulation tissue formation 
and scarring were not affected. Their results demon-
strated that limited activation of activin in the epider-
mis enhances reepithelialization without inducing ex-
cessive scarring. In other words, the free activin that is 
generated in the absence of keratinocyte-derived fol-
listatin is obviously insufficient to enhance granulation 
tissue formation and subsequent scarring. This may be 
because of the lower concentration of free activin, com-
pared to the activin-transgenic mice [32]. 

Recombinant human TGF-β3 (avotermin): Trans-
forming growth factor-β (TGF-β) has three isoforms 
and its ratio is important for optimizing a scar out-
come. TGF-β1, TGF-β2, and TGF-β3 have differential 
temporal effects during the wound healing process [2]. 
The balance between TGF- β1 and TGF-β3 may be an 
important regulator of scar formation. The anti-TGF-β 
approach for scar therapy might be the most important 
discovery in the area of scar prevention and treatment, 
which has already been translated from scientific dis-
covery derived from an animal study [33,34] into clini-
cal trials [33,35]. The addition of exogenous TGF-β1 
in fetal wounds could convert the scarless healing into a 
scar-forming healing pattern [33,36,37]. An increased 
production and release of TGF- β1 during wound heal-
ing may lead to the formation of scars [38]. To translate 
this discovery into applied research, Shah et al. [33,39] 
later developed a scar reduction approach using TGF- 
β1 and β2 antibodies to neutralize TGF-β1 and β2 in 
rat incision wounds, and they successfully reduced 
wound scarring [38,40-42]. 

Human recombinant transforming growth factor-
beta 3 (TGF- β3) (avotermin) is a new class of pro-
phylactic therapy for the improvement of scarring that 
downregulates TGF- β1 expression [38,40-42]. The 
role of the TGF-β family in scar-free and scar-forming 
healing is revealed in the current literature. Fibroblasts 
from fetal tissue that heal without scarring also exhib-

ited an increased expression of TGF-β3 [38,43,44]. 
Briefly, in fetuses that heal without a scar, the ratio 
of TGF-β3 to the TGF-β1 and β2 isoforms is high, 
while in scar-forming healing the ratio of TGF-β3 to 
TGF-β1/ β2 is low [45,46]. Also, the addition of exoge-
nous TGF-β1 to a scar-free healing model of fetal repair 
results in scar formation [45,47], while wounds made 
on early mouse fetuses genetically nulled for TGF-β3 
heal with a scar [45,48]. Further insights have come 
from studies of the oral mucosa, a tissue characterized 
by rapid healing and a lack of scar formation [45,49], 
showing that a significantly higher ratio of TGF-β3 to 
TGF-β1 is present in wounds of the oral mucosa, com-
pared to dermal wounds elsewhere in the same adult 
[45,50]. 

Exogenous addition of TGF-β3 or inhibitors of 
TGF-β1 and TGF-β2 to adult wounds reduces subse-
quent scarring [7,34,39,45]. Occleston et al. identi-
fied TGF-β3 as an important cytokine in normal skin 
morphogenesis and in the scar-free embryonic healing 
response. They then demonstrated that exogenous ad-
ministration of human recombinant TGF-β3 by intra-
dermal injection resulted in wounds that healed with 
an improved appearance and histological architecture 
in preclinical studies in animals. They then translated 
these findings into man, executing a series of phase I/II 
clinical trials. These trials demonstrated the beneficial 
effects of avotermin in prophylactically improving sub-
sequent scar appearance. Subsequently, appropriately 
designed patient-based clinical trials demonstrated that 
avotermin improved the appearance of scars follow-
ing scar revision surgery. To date, eight double-blind, 
placebo-controlled, prospective phase II clinical trials 
have met their primary endpoints and have demon-
strated a statistically significant improvement in scar 
appearance with avotermin treatment [45]. Shah et al. 
also discovered that adding exogenous TGF- β3 could 
also significantly reduce wound scarring in a rat model 
[33,51]. In their most recent study, Honardoust et al. 
stated that reduced expression of TGF-β3, decorin and 
fibromodulin, in contrast to TGF-β1, in deep dermis 
may potentially influence the outcome of wound heal-
ing as well as aggravate HTS formation after injuries 
that involve deeper layers of skin [38]. Interestingly, 
Honardoust et al. showed for the first time that deep 
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dermal or reticular fibroblasts express significantly 
more TGF-β receptor type II compared to superficial 
or papillary fibroblasts. These data suggest that inju-
ries to the deep dermis, which contains more TGF-β 
receptor type II expressing fibroblasts, are more prone 
to TGF- β1 fibrogenic activity and can be accounted, 
in part, for the development of HTS formation after 
wounding [38].

Role of epidermis in scar development: Multiple 
lines of evidence from the clinic, in-vitro experiments, 
and in-vivo animal and human studies, however, in-
creasingly suggest that the epidermis plays a major 
role in the control of underlying dermal scarring. In 
the spectrum of factors contributing to dermal scar-
ring, the epidermis and its downstream effectors offer 
promising new targets for the development of anti-scar 
therapies [51]. There is a growing body of evidence 
showing that the epidermis plays an important role in 
initiating inflammation in response to injury and con-
tinuing to mediate inflammation long after reepithelial-
ization has occurred, until full competence of the stra-
tum corneum as a water barrier is achieved. The outer 
layer of the epidermis, the stratum corneum, functions 
as a water barrier, and until that water barrier becomes 
fully competent, there is a driving proliferative signal 
to restore homeostasis, and those stimulatory signals 
have secondary effects on the dermis with a net in-
crease in scarring [51]. Therapeutic maneuvers that 
mimic a competent stratum corneum (occlusive cover-
ings) should decrease scarring by early restoration of 
homeostasis, as well as a reduction in proliferative or 
inflammatory signals. Modulation of the inflammatory 
state of the epidermis, especially through restoration of 
barrier function, is therefore a key target in the control 
of dermal scar formation. 

Persistent epidermal activation by IL-1 may exert 
effects on the underlying dermis through activation 
of well-known downstream effectors of scars, such as 
TGFβ and the connective tissue growth factor (CTGF) 
[52]. Occlusive dressings, such as silicone gel in its 
various forms, or other alternatives, reduce reactive 
epidermal hyperplasia, and IL-1 signaling, presumably 
due to their ability to restore barrier function, where-
by reducing transepidermal water loss (TEWL) and 
therefore increasing skin hydration [51]. Mechanisms 

for transduction of the decreased hydration state to the 
epidermal inflammatory cascade need to be elucidated. 
It is reasonable to hypothesize that changes in osmo-
larity play an important role in this signal transduction 
[51,53,54]. Delineation of the exact epidermal to der-
mal communication pathways and their convergence 
on effectors of scar formation will also be essential. 
Although these mechanisms have yet to be elucidated, 
Mustoe and Gurjala suggested that epidermal regula-
tion of dermal scarring is a promising new target for 
continued therapeutic efforts at scar reduction [51].

Researches for New Hopeful Treatment 
Modalities
Gene Therapy: Gene therapy might also serve as 

a potential important anti-scarring therapy approach 
[33,55,56]. As examples, the adenovirus- [33,56] or 
retrovirus- [33,57] mediated overexpression of trun-
cated TGF-β receptor II was found to be able to inhibit 
wound scarring in animal models. Because fibromod-
ulin is a modulator of TGF-β and can inhibit TGF-β 
activation, adenovirus-mediated overexpression of fi-
bromodulin was also used as a strategy for inhibiting 
scar formation [33,58]. In addition, TGF-β antisense 
oligodeoxynucleotides were also used for scar inhibi-
tion [33,59]. Gordon et al. [33,60] and Peranteau et 
al. [33,61] demonstrated that adenovirus-mediated or 
lentivirus-mediated overexpression of IL-10 in wounds 
could reduce scarring in healed postnatal or adult 
wounds. Akasaka et al. [33,62] applied the exogenous 
basic fibroblast growth factor (bFGF) to a rat incision 
wound and demonstrated that it could promote wound 
cell apoptosis as well as suppress granulation tissue for-
mation. Based on this study, Ono et al. [33,63] trans-
lated the experimental discovery into clinical trials and 
demonstrated that topical application of bFGF could 
help to reduce wound scarring in human acute inci-
sion wounds. In another animal study, Ono et al. dem-
onstrated that wound gene therapy with HGF could 
significantly reduce scar formation and enhance skin 
regeneration [33,64]. 

Multifactor-based anti-scarring approach: A 
multifactor-based anti-scarring approach has been pro-
posed in order to achieve a combinational effect on 
multiple targets of wound healing and scar formation 
process. Theoretically, this multifactor-based approach 
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might be carried out with a combined application of 
two or more factors together in wounds or by apply-
ing different factors at different wound-healing stages 
to act on their own specific targets. For example, the 
combined use of recombinant TGF- β3 and recombi-
nant IL-10 to both inhibit the inflammatory reaction 
and antagonize the scar-causing effects of TGF- β1 and 
β2, and this combined effect would be reasonably more 
effective than the effect of using either TGF- β3 or IL-
10 alone [33].

Tissue-engineered wound repair: It has been 
known that delayed wound healing can lead to severe 
scarring [65]. The prolonged wound-healing process 
results in a series of inflammatory reactions with en-
hanced production of scar-causing growth factors and 
cytokines [33,66,67]. Hence, promoting wound clo-
sure by enhanced wound epithelialization would be 
one of the options to prevent HS formation. For scar 
reduction at the donor site of a skin graft, a chitosan–
gelatin membrane was developed for use as a carrier 
for transferring a cultured epithelial graft to treat the 
wound [33,68]. The selection of the chitosan mem-
brane was based on the fact that it is mechanically 
feasible for keratinocyte sheet transfer, has good com-
patibility with keratinocytes, and can promote wound 
healing [33,69,70]. After proof of efficacy in an animal 
experimental study, a keratinocyte-seeded chitosan–
gelatin membrane was used as a tissue-engineered epi-
dermal membrane for a clinical trial. At the donor sites 
of a split skin graft, half of the wound was treated with 
the epidermal membrane, whereas the other half was 
treated with routinely used Vaseline gauze as a control. 
Interestingly, the clinical results showed that the heal-
ing time was significantly shortened for the epidermal 
membrane-treated wound than for the gauze-treated 
wound. More importantly, the rapidly epithelialized 
wound eventually led to much reduced scarring than 
the control wound, which was also verified by the sig-
nificant difference in the Vancouver scar scale analysis 
between the two groups [69]. The results of this study 
indicate that tissue-engineered wound repair is par-
ticularly important in scar reduction and prevention in 
large wounds, where endogenous regeneration ability 
may not be sufficient to repair and regenerate the epi-
dermis in a timely manner to prevent the consequential 

scar-causing events. 
For the prevention of extensive wound scarring, the 

application of tissue-engineered skin should also serve 
as a carrier for providing regenerative materials and sig-
nals to the wound in order to fully regenerate the skin 
structure, including skin appendages. Thus, Liu et al. 
proposed the following suggestions to be integrated 
into a regenerative bioengineered skin, including: (a) 
anti-TGF-b reagents [56], such as TGF- β3, or TGF-β 
antagonists, like decorin and soluble TGF-β receptors, 
or a TGF-β activation inhibitor or modulator, such 
as mannose-6-phosphate or fibromodulin; (b) other 
growth factors that promote regeneration and that in-
hibit matrix production, for example, HGF; (c) anti-
inflammatory cytokines, like IL-10 or other molecules 
that are able to inhibit inflammation; (d) fetal ECMs 
that may favor skin regeneration, like hyaluronic acid; 
(e) regenerative signals, for example, Wnt ligands [71] 
or Epimorphin; [72] and (f) regenerative stem cells 
that have the potential to differentiate and develop 
skin-related structures.

Antiangiogenesis approach: Angiogenesis might 
be a target for preventing hypertrophic scarring. If 
uncontrolled growth of hypertrophic scarring can be 
considered as a type of neoplastic tissue, the antian-
giogenesis approach would then be relevant because it 
has already been proven to be an efficient way to con-
trol tumor growth [73] and has been applied in clini-
cal cancer therapy [74]. The clinical phenomenon of 
enhanced angiogenesis (erythema) always precedes 
HS formation, and also provides a rationale for using 
antiangiogenesis as a potential anti-scarring approach.

Based on the observation of microvascular abnor-
mality in pathological scarring [75-77], the use of an 
antiangiogenesis approach has been proposed to inhib-
it HS formation [78]. Song et al. [78] developed a gene 
therapy approach for scar reduction, using adenovirus-
mediated overexpression of METH1 (metalloprotease 
and thrombospondin 1), and the result showed signifi-
cantly reduced microvessel density and microcircula-
tory perfusion along with reduced scarring in a rabbit 
ear model. 

It has been reported that an important part of the 
therapeutic mechanism of the laser is angiogenesis in-
hibition [79-80]. Liu et al. proposed the use of PDT to 
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treat post-burn healed wounds in order to better con-
trol the angiogenic reaction secondary to wound injury, 
and hope to find a way to prevent HS formation [33]. 
Interestingly, Cai et al. have reported the PDT treat-
ment of a hyperplastic scar in a rabbit ear model, and 
demonstrated that it could reduce scar formation, de-
crease microvessel density, and prevent excess collagen 
deposition at the wound site [81].

Inhibition of Collagen synthesis: Nonspecific in-
hibitors of collagen synthesis (such as penicillamine) 
are not used anymore because of its unacceptable toxic-
ity. Instead of them, specific nontoxic inhibitors of col-
lagen synthesis that could be applied locally have been 
tested in recent years [82,83]. Bilidase (a hyaluroni-
dase preparation), pentoxifylline (the antifibrinolytic 
agent), and fibrostat (putrescine in a eutectic vehicle) 
have also been studied for the treatment of hypertroph-
ic scars, and promising signs have been observed [2,84-
86]. 

Conclusion 
It is much more efficient to prevent hypertrophic 

scars than to treat them. Prevention implies using a 
therapy with the aim of reducing the risk of a problem-
atic scar evolving, so treatment and prevention regi-
mens can be similar. The other noteworthy fact, aside 
from prevention, is that the most successful treatment 
is achieved when the scar is immature, but the overly-
ing epithelium is intact, although this is not as yet con-
firmed in current literature [82].

Most of the recent experimental studies have in-
terested in the molecular events in wound healing due 
to the difficulty of hypertrophic scar treatment. The 
researchers are trying to find a way to scarless wound 
healing as well as fetal wound healing. It seems likely 
that new therapies will be available within the next few 
years. 
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